RPT Software – E-Mail Module Manual
1 - Overview

The RPT Software E-Mail module is a sample database designed to allow other Access developers a quick and easy way to add sophisticated E-Mail and Microsoft Word merge capabilities into their own databases.
Information about RPT Software can be found at:
http://www.rptsoftware.com
Note: please read the license.txt file for legal information about this product.

2 - Getting Started

This section will provide a step by step walk thru of the system. A good way to follow the walk thru is to print out the entire manual because the walk thru will reference sections of the manual and some concepts are tricky to understand.

Step 1: Check to see that you have a subdirectory called “RPT” in the directory the Email.MDE file resides (example: if the Email.MDE is at c:\mydatabase\email.mde then create a subdirectory called “RPT” at c:\mydatabase\rpt. This directory will be used to store temporary reports used as attachments in e-mails etc….

Step 2: Check to see that you also have a subdirectory called “Word” with a few word templates.

Step 3: You need to register the OSSMTP.DLL file by doing the steps in the “StepsToInstallOSSMTP DLL.txt” document. Without this email can not be sent!!!!!

Step 4: Open the Email.MDE file in Microsoft Access

Step 5: The splash screen will display for a few seconds. (See section 1 for more details)
Step 6: The main menus screen will appear. (See section 2 for more details)

Step 7: Click on the setup button to provide settings for your particular SMTP E-Mail server. These are need for the e-mails to be sent. (See section 3 for more details)
Step 8: Explore the screens and buttons found throughout the demo. Make sure you add some valid Email addresses to some customers so you can test. Example: add your own email address to a few customers. (See sections 4 thru 10 for more details)

Step 9: Choose File/Exit to exit the application. Hopefully you liked the E-Mail Module and you will purchase the database and source code. See http://www.rptsoftware.com for more information about purchasing the software.
1 – Splash Screen

[image: image1.png]
A basic of every developer’s toolkit. Shows various information about the computer system and is used at the start of the program.
2 – Main Menu
[image: image2.png]
This screen is the main menu.
3 – Setup Screen
[image: image3.png]
To use the SMTP mail component (OSSMTP.dll) you need to provide a few settings so e-mail can be sent to your SMTP server (server and authentication type and username/password if needed). See section 8 if you need more information about what a SMTP server is etc….
The attachments field is used to determine (when using email templates) how to construct the file path. Example: you pass in “Sales.RTF” as an attachment name and the program really uses [CURRENT DIRECTORY]\RPT\Sales.RTF as the filename. After you purchase the software you can control how attachment paths work (we just used RPT as the directory to store all attachments by default).
The rest of the screen is used to test sending an email. Please run at least one test e-mail to make sure your settings are correct.

4 – Using Word Merge Templates
[image: image4.png]
Microsoft Word documents can be setup to merge data from external sources. Our code allows you to forget about the details and just provide the user a way to maintain a set of Word Merge Templates they can use for customer letters and other word documents they want to merge with data from their Access database. Thanks go out to Albert D. Kallal for providing the word merge code. We only tweaked it a tiny bit to rename some forms to better names, other than that we didn’t see any need to improve the code. If all you need is word merge code feel free to find Albert’s code on the web. However, it was our goal to provide a solution that did e-Mail and word templates so with Albert’s permission we included his code in our E-Mail Module.

Before you begin
To use the existing templates that come with the Email.MDE database you need to do these steps for each template:

1 – Modify the template

2 – Save the template
This will change the connection that the Word documents have to work correctly with your directories etc…

Add a New Template
Will Open Word and setup the necessary connection to create a word merge document.

Note: all new templates should be created using this button. If you have an existing document that you want to turn into a Word merge template you should do these steps:
1. Open/Select ALL/Copy from your existing Word document
2. Click the Add New template button

3. Paste items from step 1 into the new document

4. Add merge fields as appropriate

Modify the Template
This will open the selected word template for editing. After you are done editing press “Save” to save the changes to disk.

Note: It’s a little confusing how to add word merge fields (use the button to the left of “Insert Word Field”):
[image: image5.png]

Delete the Template
This will delete the word template document.

Ok – Merge to Word
This will launch the Word Template and merge your data into the word document appropriately.

Examples of how to do word merges:

Examples from a form showing a single custom record:

1. Add a button cmdWordMerge, “Word Merge…” with this code:

Private Sub cmdWordMerge_Click()

'Bring up the word merge template form for selecting the template of choice

 SaveData

 MergeSingleWord

End Sub

Private Sub SaveData()

 If Me.Dirty Then Me.Dirty = False

End Sub

This will save any changes made and then bring up the Word Merge form for the user to select/add/modify a template and perform a word merge using the fields and data from the form which had the “Word Merge…” button.

2. Add a button cmdCustomerLetter, “Create Customer Letter…” with this code:

Private Sub cmdCustomerLetter_Click()

'Create a word document directly by using the "customerLetter.doc" template

 SaveData

 MergeNoPrompts "customer letter.doc", , , "Letter.doc"

End Sub
Private Sub SaveData()

 If Me.Dirty Then Me.Dirty = False

End Sub

This will save any changes made and then bring up the specific template “customerletter.doc” and perform a word merge using the fields and data from the current form and call it “Letter.doc”.

Alternatively if you want to do a word merge with multiple records of data you can provide the sql to supply the data fields for the word merge.

In our demo here’s the code from the “Create Customer Letters…” button:

Private Sub cmdCustomerLetters_Click()

'Creates a word merge using a specific word template

 Dim sql As String

 sql = GetSQL

 MergeNoPrompts "customerletter.doc", , , "Letter.doc", sql

End Sub

Private Function GetSQL() As String

 Dim sql As String

 Dim WhereClause As String

 Dim varItem As Variant

 WhereClause = ""

 For Each varItem In Me.ListCustomer.ItemsSelected

 WhereClause = WhereClause & Me.ListCustomer.ItemData(varItem) & ", "

 Next

 If (WhereClause <> "") Then

 WhereClause = "WHERE (tblCustomer.CustomerID IN (" & Left(WhereClause, Len(WhereClause) - 2) & ")) "

 End If

 sql = "SELECT * from tblCustomer "

 sql = sql & WhereClause

 GetSQL = sql

End Function

This code happens to loop thru a multi-select list box to construct the sql statement that is sent to the “MergeNoPrompts” function but we hope you get the general idea. The sql can come from anywhere:
- a form with two buttons, one to do a word merge with current record and one to do a word merge with ALL records.
- create a letter for all customers who are late for payments (by constructing sql for the customer who are late and passing it to the function).

- etc…

5 – Using E-Mail Templates
[image: image6.png]
E-Mail templates are used to merge data from the database into specific areas of text for the E-Mail message to be created. For example you might want to send an e-mail reminder to customers with the email having the same general layout with specific areas of the email customized for the specific customer it is going to, and of course you usually send the email to the customer’s email address on file in the database.

Basics of adding, modifying and deleting E-Mail templates

Word templates are stored outside the database but e-mail templates are stored in the table tblEmailTemplate in your current database. Let’s look at the E-Mail Template setup screen:

[image: image7.png]
[image: image8.png]
The screen consists of three tabs:
· General (used to store the name of the e-mail template as well as the basics (From, To, CC, BCC, Subject)
· Body (Text) (used to store the body of the e-mail in text format)
· Body (HTML) (used to store the body of the e-mail in HTML format)

Note: if the person receiving the mail has an e-mail client that does not support HTML they will see the text version of the e-mail body.

The real power comes from being able to substitute data from the database at RUN-TIME through the use of tokens you place in the email template fields. When you call the function MergeEmails() you pass in various parameters but the only required parameter is the sql that will be used to drive the email. We will talk more about this function later (here is the definition):

Public Function MergeEmail(sql As String, Optional bolStoreEmailHistory As Boolean = True, Optional EmailTemplateID As Long = 0, Optional DisplayType As Integer = 1, Optional bolSingleEmail As Boolean = False, Optional Title As String = "E-Mail Templates")

'This is the main function used by other forms

'Example you put a button on a form and call this function with the sql you want to use for the email merge

'To use this function you pass in:

' - the sql to use for the email merge (REQUIRED)

' - bolStoreEmailHistory determines whether email history is saved to the tblEmailHistory

' - EmailTemplateID is the email template you want to use (this causes the DisplayType to always be 3)

' - DisplayType (1 = show all buttons, 2 = hide delete button, 3 = one template/send and preview only mode)

' - bolSingleEmail (True to use singular wording on form example "E-Mail" vs "E-Mails"

' - Title (title used on form)

The sql passed into MergeEmails() is used to determine which fields can be used to substitute data into the email template.

Tokens start and end with 2 number signs “##” and have a name between them. Example: ##Email## or ##LastName## or ##FirstName##
So if your sql was “Select FirstName, LastName, Email from tblCustomer where Salary > 80000” and it returned 3 rows:
Mark
Andrews
mandrews@rptsoftware.com
Joe
Smith

jsmith@msn.com
Sue
Jones

sjones@comcast.net
And you used the ##Email## token in the TO field in the Email template at runtime 3 emails would be sent to the 3 different emails listed each using the email template and it’s contents.
You can have a unlimited number of tokens but you must have sql that drives the field names to supply ALL tokens found in an E-Mail template or the email will not be sent.

In the example above we have (this text in the e-mail body (text)):
Dear ##FirstName##,

Thank you for your interest in our services.

We currently have the following info on file for you:

Name: ##FirstName## ##MI## ##LastName##

Company: ##CompanyName##

Street: ##Address##

City: ##City##

State: ##State##

Zip: ##Zip##

Phone: ##Phone##

Mobile: ##Mobile##

E-Mail: ##Email##

This would cause a number of substitutions, everywhere tokens are found.
Special tokens

##Filename1## thru ##Filename9## are used to identify files which should be used as attachments
##FileBody1## thru ##FileBody9## are used to identify files which should be read and inserted to replace the token.

Let’s talk the email template examples found in the demo:

From the customer screen there are a number of buttons to do various e-mail merges:

[image: image9.png]
Email Merge…

 This button has the following code:

Private Sub cmdEmail_Click()

'Bring up the Email template form for selecting the template of choice

 Dim sql As String

 SaveData

 sql = "Select * from tblCustomer where CustomerID = " & Me.CustomerID

 Call MergeEmail(sql, True, , , True)

End Sub

Private Sub SaveData()

 If Me.Dirty Then Me.Dirty = False

End Sub

Which passes in the:

· sql (which returns one row of data from the tblCustomer table)
· bolStoreEmailHistory to True (which tells it to save email results to the tblEmailHistory table)
· EmailTemplateID (no value given so it uses zero)

· DisplayType (no value given so it uses 1)
· bolSingleEmail to True (which is used to control the wording you see on screens to use singular (“Email” vs. “Emails” etc…)
· title (no value give so it uses "E-Mail Templates")

By not giving this function an EmailTemplateID it causes the normal E-Mail Template selection screen to appear. From there the user can select an email template and send or preview the ONE email that will be sent. By trying the Preview and Send Email buttons you will see what happens when those are pressed (screen changes size and things happen), when sending emails you can view the status at the bottom and top of the screen and see results on the right hand side.

Create Customer Email…

This button has the following code:

Private Sub cmdCustomerEmail_Click()

'Create a email directly by using the "customer email" template (template number 1)

 Dim sql As String

 SaveData

 sql = "Select * from tblCustomer where CustomerID = " & Me.CustomerID

 Call MergeEmail(sql, False, 1, 3, True, "E-Mail Customer Letter")

End Sub

Which passes in the:

· sql (which returns one row of data from the tblCustomer table)

· bolStoreEmailHistory to False (which tells it NOT to save email results to tblEmailHistory)

· EmailTemplateID to 1 (use a email template #1)

· DisplayType (no value given so it uses 1)
· bolSingleEmail to True (which is used to control the wording)
· title to “E-Mail Customer Letter” (uses this value for the title)

By giving this function an EmailTemplateID of 1 it causes the screen to behave differently and the user can no longer pick an E-mail template, their only options are to send or preview the customer letter email.

Create Customer Email with Report Attachment…

This button has the following code:

Private Sub cmdEmailwithAttachment_Click()

 Dim ReportName As String

 Dim filename As String

 Dim ReportFormat As String

 Dim WhereClause As String

 Dim Result As String

 Dim sql As String

 SaveData

 ReportName = "rptCustomerSales"

 filename = CurrentDBDir & "RPT\Sales.rtf"

 ReportFormat = "RTF"

 WhereClause = "WHERE (CustomerID = " & Me.CustomerID & ")"

 'step 1 make the report file (to be used as an attachment)

 Result = RPT_CreateSingleFile(ReportName, filename, ReportFormat, WhereClause)

 If (Result = "Success") Then

 sql = "Select *,""Sales.RTF"" as Filename1 from tblCustomer where CustomerID = " & Me.CustomerID

 Call MergeEmail(sql, True, 1, 3, True, "E-Mail Customer Letter")

 Else

 MsgBox Result, vbOKOnly, "Error Creating Report (to be used as attachment)"

 End If

End Sub

Which first goes off and runs a report and save it to a file. See section 6 on the report creation functions available for creating files using various methods.

Then it calls similar code to launch the email except for one difference. It adds an extra field to the sql statement so that a field called “Filename1” will be populated with the path to the report file that was just created. Because “Filename1” is a special token the function will retrieve the file and attach it to the email.

Note: In this example the file is saved at [CurrentDir]\RPT\Sales.RTF and only the “Sales.RTF” is used in the sql. We have a global preference which is setup when you setup the email settings that determines whether to use relative paths (always look at subdirectory “RPT” or top use absolute paths). All examples use relative paths to make it easier.
Create Customer Email with Report used in body…

This button has the following code:

Private Sub cmdEmailwithReportinBody_Click()

 Dim ReportName As String

 Dim filename As String

 Dim ReportFormat As String

 Dim WhereClause As String

 Dim Result As String

 Dim sql As String

 SaveData

 ReportName = "rptCustomerSalesSimple"

 filename = CurrentDBDir & "RPT\SalesSimple.txt"

 ReportFormat = "TXT"

 WhereClause = "WHERE (CustomerID = " & Me.CustomerID & ")"

 'step 1 make the report file (to be used as an attachment)

 Result = RPT_CreateSingleFile(ReportName, filename, ReportFormat, WhereClause)

 If (Result = "Success") Then

 sql = "Select *,""SalesSimple.TXT"" as FileBody1 from tblCustomer where CustomerID = " & Me.CustomerID

 Call MergeEmail(sql, True, 2, 3, True, "E-Mail Customer Letter")

 Else

 MsgBox Result, vbOKOnly, "Error Creating Report (to be used as attachment)"

 End If

End Sub
This code is almost exactly the same as the previous one (which created an attachment for the email) except if you look close it calls EmailTemplate ID #2 and saves a file in TXT format (by running a report) and then it adds an extra column to the sql called “FileBody1” which if you look at Email Template #2 you will see that it has a token ##FileBody1## in the body of the email message.

At runtime the contents of the SalesSimple.txt file will be loaded into the body of the email before the email is sent. Note: You could go off and create a file in anyway you need. This code just happens to be running a report and exporting it to a .TXT file.
Create Customer Email with everything tricky…

This button has the following code:

Private Sub cmdEmailwithEverythingTricky_Click()

 Dim ReportName As String

 Dim filename As String

 Dim ReportFormat As String

 Dim WhereClause As String

 Dim Result As String

 Dim sql As String

 SaveData

 ReportName = "rptCustomerSalesSimple"

 filename = CurrentDBDir & "RPT\SalesSimple.txt"

 ReportFormat = "TXT"

 WhereClause = "WHERE (CustomerID = " & Me.CustomerID & ")"

 'step 1 make the report file (to be used in the body (TXT))

 Result = RPT_CreateSingleFile(ReportName, filename, ReportFormat, WhereClause)

 'step 2 make the report file (to be used in the body (HTML))

 filename = CurrentDBDir & "RPT\SalesSimple.htm"

 ReportFormat = "HTM"

 Result = RPT_CreateSingleFile(ReportName, filename, ReportFormat, WhereClause)

 'step 3 make the report file (to be used as an attachment)

 filename = CurrentDBDir & "RPT\SalesSimple.rtf"

 ReportFormat = "RTF"

 Result = RPT_CreateSingleFile(ReportName, filename, ReportFormat, WhereClause)

 If (Result = "Success") Then

 sql = "Select *,""SalesSimple.TXT"" as FileBody1,""SalesSimple.HTM"" as FileBody2,""SalesSimple.RTF"" as FileName1 from tblCustomer where CustomerID = " & Me.CustomerID

 Call MergeEmail(sql, True, 12, 3, True, "E-Mail Customer Letter")

 Else

 MsgBox Result, vbOKOnly, "Error Creating Reports (to be used in body and as attachments)"

 End If

End Sub

This code is similar to the other examples except it creates three files before sending the email.

One file is used in the Body (Text), one file is used in the Body (HTML) and one file is used as an attachment. It also calls EmailTemplateID #12 which is an email template designed to send an HTML Newsletter.

Note: The routine uses special logic when substituting files into the Body (HTML) of an email. It strips off any HTML up to and including <BODY> and strips off </BODY> and everything after so that html documents can be included into the middle of an existing HTML template. For our examples we used some templates found at http://www.campaignmonitor.com/templates/
Note: please remember to strip out any references to www.rptsoftware.com if you want to copy some of our HTML templates (see section 7 for some tips on creating HTML emails).
Examples creating multiple emails:
Private Sub cmdEmailAttachments_Click()

'Creates an email merge using a specific email template

'the user will only have the option to preview or send the emails

'Before doing the email merge a number of reports are turned into files so they can be used

'for attachments on each email

 Dim sql As String

 Dim insertsql As String

 Dim ReportName As String

 Dim filename As String

 Dim ReportFormat As String

 Dim WhereClause As String

 Dim WhereClause2 As String

 Dim Result As String

 Dim db As Database

 Dim RS As DAO.Recordset

 Dim AnyError As Boolean

 Dim varItem As Variant

 AnyError = False

 'Step 1: make all the reports into files so they can be used for attachments

 ReportName = "rptCustomerSales"

 ReportFormat = "RTF"

 WhereClause2 = ""

 'Loop through recordset or list and create a file for each record/item

 For Each varItem In Me.ListCustomer.ItemsSelected

 filename = CurrentDBDir & "RPT\CustomerReport" & Me.ListCustomer.ItemData(varItem) & ".RTF"

 WhereClause = "WHERE (CustomerID = " & Me.ListCustomer.ItemData(varItem) & ")"

 WhereClause2 = WhereClause2 & Me.ListCustomer.ItemData(varItem) & ", "

 'option #1 create single files while looping

 'Result = RPT_CreateSingleFile(ReportName, filename, ReportFormat, WhereClause)

 'option #2 append record to tblReportqueue and then call function at end to create all files

 insertsql = "INSERT INTO tblReportQueue (ReportName, ReportFile, ReportFormat, QueryText) " & _

 "SELECT """ & ReportName & """, """ & filename & """, ""RTF"", """ & WhereClause & """"

 DoCmd.RunSQL insertsql

 If (Result <> "Success") Then

 AnyError = True

 End If

 Next

 If (WhereClause2 <> "") Then

 WhereClause2 = "WHERE (tblCustomer.CustomerID IN (" & Left(WhereClause2, Len(WhereClause2) - 2) & ")) "

 End If

 sql = "SELECT tblCustomer.*, ""CustomerReport"" & [CustomerID] & "".rtf"" AS Filename1 from tblCustomer "

 sql = sql & WhereClause2

 'If Not (AnyError) Then

 If (RPT_CreateFiles = 1) Then

 Call MergeEmail(sql, True, 1, 3, True, "E-Mail Customer Letter")

 Else

 MsgBox Result, vbOKOnly, "Error Creating Reports (to be used as attachments)"

 End If

End Sub
The basics of running reports and creating multiple emails are very similar to what we looked at already when we did it with a single customer, however with a few differences:

Example: I want to send an email to 100 customers with each report having an attachment of the SalesReport run for each customer.

To do this your would:
- create 100 report files (using some naming id)
- create the 100 emails

Our code above lets the user select which customers they want to email but the idea is the same.

Note: The code above shows two methods for creating the files, Option #1 is commented out which calls RPT_CreateSingleFile() in a loop to make the files. Option #2 adds a record to tblReportqueue and then calls the function RPT_CreateFiles() to create all 100 files. See section 6 on the report creation functions available for creating files using various methods.

6 – Reporting Functions
Besides E-Mail and Word templates and functionality you also get a module which makes it easy to run reports in various ways and create files. We provide two functions:

· RPT_CreateSingleFile(ReportName, ReportFile, ReportFormat, QueryText, QueryName)
This function creates a single file and returns a string indicating either "Success" or the error that occurred trying to create the file.

Function arguments include:
- ReportName is the name of the report in Access
- ReportFile is the complete path for the result file (ex: "C:\reports\myrpt.pdf")
- ReportType is the format ("PDF", "RTF", "XLS", "RAW", "SNP", “HTM” or “TXT”)
 "PDF" = Adobe PDF Format
 "RTF" = Rich Text Format
 "XLS" = Microsoft Excel
 "RAW" = Microsoft Excel from the results of the query
 "SNP" = Microsoft Snapshot
 "HTM" = HTML
 "TXT" = Text
- QueryText is the SQL to be used for a WHERE clause or the query(s) which drive the report
- QueryName is the name of the query(s)

· RPT_CreateFiles()
This function creates multiple files by using table tblReportQueue that holds report requests.

Details of how it works:
This function uses the table tblReportQueue and runs through every record in which the field "Complete" is False. For each record it uses the various fields to call RPT_CreateSingleFile(...) and then fills in the fields: "Complete", "TimeStamp" and "ErrorMessage" appropriately. This allows you to use the tblReportQueue as an audit trail of exactly what happened with every report.
Note: While these two functions appear and are very easy to use keep in mind there are various pieces of code going on behind the scenes in these functions to keep everything simple and robust (thus the reason we charge a fee for this product):

· dynamic query generation

· checking for various errors (disk space free, directories exist etc…)

· registry or INI manipulations depending on operating system

Note: Feel free to add fields to the table tblReportQueue as needed as long as you don’t change any of the existing fields the function will continue to work properly.

Examples

Example #1

This example is a simple call to a create a report and save it in PDF format:

Result = RPT_CreateSingleFile("rptExample", "C:\Reports\Report1.pdf","PDF")

Example #2

This example is a simple call to a create a report and save it in PDF format while including a WHERE clause to filter the report results to only records where the Salary is greater than $50,000:

Result = RPT_CreateSingleFile("rptExample", "C:\Reports\Report1.pdf","PDF","WHERE Salary > 50000")

Example #3

This example is a simple call to a create a report and save it in PDF format while including SQL for all the queries that drive this report (For some reason we want to just see customers that make more than $35,000 and products with product code 'CG'). This report happens to have a sub report so we provide SQL for both the main report and the sub report (notice the "|" character is used as a delimiter between the multiple query strings and the multiple query names):

Result = RPT_CreateSingleFile("rptExample", "C:\Reports\Report1.pdf","PDF","Select tblExample.* WHERE Salary > 35000 | Select tblProducts.* WHERE ProductCode = 'CG'","qryMainReport | qrySubReport")

Example #4

This example creates 10,000 PDF files by appending records to our tblReportQueue table and calling our function:

DoCmd.SetWarnings False
DoCmd.OpenQuery "qryAppendDailyFixedReportsToQueue"
DoCmd.SetWarnings True

Result = RPT_CreateFiles()
Notes about PDF file creation
We designed this E-Mail module so it could be used by all versions of Microsoft Access and out of the box Access versions below 2007 do not have built-in PDF export capabilities. There are numerous ways to make PDF files including:

· Use Stephen Lebans pdf export routines http://www.lebans.com/reporttopdf.htm
· Use a third party pdf driver
- we provided code that will work with our favorite “Win2pdf”, http://www.win2pdf.com
You should substitute your favorite method of creating pdf files into our module (see RPT_CreateSingleFile())

7 – HTML E-Mail templates
Creating great looking dynamic HTML templates and emails is a bit beyond the scope of what we can teach in this manual. For our example templates what we did was:

· goto http://www.campaignmonitor.com/templates/
· downloaded a few sample templates

· uploaded the html and images to our website

· modified the html so all references to images etc… pointed to the website locations

· added in a few tokens to provide a little customization to give you an idea

Our 4 HTML email sample templates are located at:

· http://www.rptsoftware.com/products/email/htmltemplate1/
· http://www.rptsoftware.com/products/email/htmltemplate2/
· http://www.rptsoftware.com/products/email/htmltemplate3/
· http://www.rptsoftware.com/products/email/htmltemplate4/
Note: HTML output from exporting reports to HTML may not provide you with HTML in the exact format you need (if trying to insert HTML into the body of an HTML template). You may need to create the HTML file via code (instead of running a report and exporting to HTML).

We did not include an HTML editor and include it with this program because we didn’t have the time and because you can use other HTML editors and then just copy the HTML text right into our form.

8 – SMTP Component

There are numerous ways to send e-mail from Microsoft Access however we choose to use a third party SMTP component from http://www.ostrosoft.com/ . In general we prefer to use a third party SMTP component because of the added power and it will always work. We picked ostrosoft because of the low price point (the non commercial license is free, the developer license is $19), see ostrosoft’s website for more details (look for the version that works with VBA). You could easily substitute another SMTP Email component (just search google for “smtp component”).

Server Objects (http://www.serverobjects.com/) makes a good one that has been around for a long time.

Note: third party SMTP components will require you to add a reference to the component, however with it’s possible to have the reference work as long as the DLL file (which is the SMTP component) resides in the current directory where the front-end database lives.
SMTP components have numerous advantages (HTML email support, control over numerous settings regarding an email, etc….). See this page for the ostrosoft control: http://www.ostrosoft.com/OSSMTP6.asp
You could even use the Microsoft Access built-in method of using SendObject, however it does have some limitations and will only work if the client using the database has the right software installed.
The SendObject command has several significant limitations:

· Messages must be 255 characters or less

· Messages are plain text and cannot be HTML format

· Cannot attach multiple files (limited to one attachment)

· Cannot attach a file on disk

· Cannot filter the data source or report to just the data you need to send

· Cannot specify the FROM address

· Cannot specify settings such as priority, sensitivity, and read receipt

· MAPI security prompts the user for each email to verify its okay

· Doesn't always work with email programs if it's not Outlook, Outlook Express, or Exchange

9 – Other Useful Code in the E-Mail Module

While e-mails, word merges and batch report creation are the big three functions of the

 RPT Software – E-Mail Module, you also get some other useful code including:

· Code to do a splash screen

· The form to select a customer is a good example of how to build a nice form with the ability to (add, edit, delete, sort by columns, and filter). Very typical is most applications.

· The customer form shows a tabbed interface with subreports showing related records (sales and email history in this example). It also has some code to open the email program and fill in the current email address and code to show a customer location on Mapquest.

· Code to iterate through a multiple select list box and retrieve the IDs of the record selected.

· The reporting code has examples of how to change registry values, deal with directories and create queries “on the fly”

· The word code uses a progress bar (which you could adapt to other situations).
10 – How to use functionality within your own database

First you will have to purchase the RPT Software – E-Mail Module to gain access to the source code, then it’s as easy as importing a few modules, tables and queries and you are ready to go. You can use the sample forms and this manual for examples of how to write the little bit of code needed under the buttons on your forms.

To add word merge capabilities import:

· Form (frmWordProgress)

· Form (frmWordTemplate

· Class Module (classWordProgressbar)

· Module (zModuleWordMerge)

To add e-email capabilities import:

· Table (tblEmailHistory)

· Table (tblEmailTemplate)

· Table (tblReportQueue)

· Query (qryDeleteEmailHistory)

· Query (qryEmail)

· Query (qryEmailHistoryOneBatch)

· Form (frmEmail)

· Form (frmEmailSetup)

· Form (frmEmailTemplate)

· Module (zModuleBatchReports)

· Module (zModuleEmail)

Note: the form (frmEmailSetup) currently uses table tblPreferences and a routine and some global variables in zModuleGeneral.

You need to store email settings in some fashion in your database, but it’s more of a one-time setup so there are various ways to add these to your database. Call RPT Software if you need any help.

To add batch reporting capabilities import:

· Table (tblReportQueue)

· Module (zModuleBatchReports)

Page 19 of 20

